Automatic Design of Hierarchical RBF Networks for System Identification
نویسندگان
چکیده
The purpose of this study is to identify the hierarchical radial basis function neural networks and select important input features for each sub-RBF neural network automatically. Based on the pre-defined instruction/operator sets, a hierarchical RBF neural network is created and evolved by using Extended Compact Genetic Programming (ECGP), and the parameters are optimized by Differential Evolution (DE) algorithm. Empirical results on benchmark system identification problems indicate that the proposed method is efficient.
منابع مشابه
Application of ANN Technique for Interconnected Power System Load Frequency Control (RESEARCH NOTE)
This paper describes an application of Artificial Neural Networks (ANN) to Load Frequency Control (LFC) of nonlinear power systems. Power systems, such as other industrial processes, have parametric uncertainties that for controller design had to take the uncertainties in to account. For this reason, in the design of LFC controller the idea of robust control theories are being used. To improve ...
متن کاملImprovement of generative adversarial networks for automatic text-to-image generation
This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...
متن کاملSEISMIC DESIGN OF DOUBLE LAYER GRIDS BY NEURAL NETWORKS
The main contribution of the present paper is to train efficient neural networks for seismic design of double layer grids subject to multiple-earthquake loading. As the seismic analysis and design of such large scale structures require high computational efforts, employing neural network techniques substantially decreases the computational burden. Square-on-square double layer grids with the va...
متن کاملBayes Networks and Fault Tree Analysis Application in Reliability Estimation (Case Study: Automatic Water Sprinkler System)
In this study, the application of Bayes networks and fault tree analysis in reliability estimation have been investigated. Fault tree analysis is one of the most widely used methods for estimating reliability. In recent years, a method called "Bayes Network" has been used, which is a dynamic method, and information about the probable failure of the system components will be updated according to...
متن کاملNonlinear modeling of MCFC stack based on RBF neural networks identification
Modelling Molten Carbonate Fuel Cells (MCFC) is very difficult and the existing models are too complicated to be used for controlling design, especially for on-line control design. This paper presents the application of neural networks identification method to develop the nonlinear temperature model of MCFC stack. The hidden layer units of the neural networks consist of a set of nonlinear radia...
متن کامل